Mineral Trapping of Co2 via Oil Shale Ash Aqueous Carbonation: Controlling Mechanism of Process Rate and Develop- Ment of Continuous-flow Reactor System

نویسندگان

  • M. UIBU
  • R. KUUSIK
چکیده

Ash containing considerable amounts of free lime as the most active component requires stabilization to assure safe landfilling. Using CO2 from flue gases as a neutralizing agent, also the emission of CO2 is diminished. The most extensive effect could be achieved by treating ash-water suspensions with CO2-containing gas. As even minute amounts of extraneous substances present in water influence the extent and rate of lime solubility in water, the behavior of lime as the key component of ash in various conditions was studied and the mechanism of process deceleration was proposed. As the next step, a laboratory-scale continuous-flow reactor system for aqueous carbonation of oil shale ash and main considerations for industrial pilotscale plant design were developed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prospects in Waste Oil Shale Ash Sustainable Valorization

An innovative approach utilizing highly alkaline oil shale waste ash and carbon dioxide gas (CO2), associated with power production, as a resource for production of precipitated calcium carbonate (PCC) is introduced in this paper. The specifics and feasibility of the integrated ash valorization and CO2 sequestration process by indirect aqueous carbonation of lime-consisting ash were elaborated ...

متن کامل

CO2 Energy Reactor – Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary gravity pressure vessel (GPV) reactor technology and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby...

متن کامل

Geological Sequestration of CO2: Mechanisms and Kinetics of CO2 Reactions in Mafic and Ultramafic Rock Formations

The main purpose of this exploratory project is to develop a more fundamental understanding of the long-term sequestration of CO2 via mineral carbonation reactions involving the common Mg-silicates in serpentinite and basalt mineral assemblages. Past experimental studies have shown that these reactions are kinetically limited, so we are exploring ways to enhance their kinetics, including the us...

متن کامل

Factors Affecting Ex-Situ Aqueous Mineral Carbonation Using Calcium and Magnesium Silicate Minerals

Carbonation of magnesiumand calcium-silicate minerals to form their respective carbonates is one method to sequester carbon dioxide. Process development studies have identified reactor design as a key component affecting both the capital and operating costs of ex-situ mineral sequestration. Results from mineral carbonation studies conducted in a batch autoclave were utilized to design and const...

متن کامل

Carbon Dioxide Sequestration by Direct Mineral Carbonation: Results from Recent Studies and Current Status

Direct mineral carbonation has been investigated as a process to convert gaseous CO2 into a geologically stable, solid final form. The process utilizes a solution of sodium bicarbonate (NaHCO3), sodium chloride (NaCl), and water, mixed with a mineral reactant, such as olivine (Mg2SiO4) or serpentine [Mg3Si2O5(OH)4]. Carbon dioxide is dissolved into this slurry, by diffusion through the surface ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009